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Abstract— We propose a modular framework for 3D tracking
not only of paved roads but also of dirt roads. It is based on
recursive state estimation of lane boundary points connected
by clothoid pieces. While our tracking is flexible to integrate
every kind of measurement, we specifically propose two image-
based measurements. They combine traditional with modern
computer vision: On the one hand, we show how to use directed
edge detection to robustly measure road and lane boundaries.
On the other hand, we introduce a innovative CNN-based
measurement utilizing the self-similarity of (dirt) road areas.

We demonstrate the performance of our approach in chal-
lenging scenarios. On a marked road, we achieve a median error
of 0.13 m for the ego lane’s boundaries in 25 m look-ahead. A
difficult dirt road can also be tracked reliably with a look-
ahead length of 25 m, resulting in a median error of 0.3 m. The
tracking, as well as both measurements, are real-time capable.

I. INTRODUCTION AND RELATED WORK

Autonomous driving has been a very popular research topic
in the last decades. A still challenging task is to establish
autonomous driving outside of dedicated testing areas on
more poorly developed roads. Therefore, we must not rely on
maps, as we have to cope with poor GNSS conditions, esp. in
forests or street canyons, and the lack of high precision maps
in more rural places. So the key is an independent perception
of the environment and especially the road to drive on.

A lot of research has been done on road detection and
tracking, but every approach is either specialized on (marked)
asphalt roads, or dirt roads. In this paper, however, we propose
a common framework for all tasks: roads and dirt roads, with
or without lane markings, single or multiple lane.

Road Model: The chosen road model determines for which
scenarios the system is suitable. Geometric representations
range from simple line models over generic smooth curves
(i.e., splines) to clothoids. Clothoids are closely related to
driving since their constant change in curvature is equivalent
to a vehicle’s constant steering rate. Thus, a classical
approach is to model the ego lane with a single clothoid
relative to the ego vehicle. Involving just three parameters –
curvature, curvature change, and road width – this is a very
efficient representation, which enabled lane following in the
1980s using impressively low computational power [1]. It is,
however, quite limited in its application.

Modern approaches like [2] rely on more complex and
flexible geometric models. Instead of modeling the road as
a whole, the single lane boundaries are modeled by splines

All authors are with the Institute for Autonomous Systems Technology
(TAS) of the Universität der Bundeswehr München, Neubiberg, Germany.
Contact author email: bianca.forkel@unibw.de

*Bianca Forkel and Jan Kallwies contributed equally to this work.

(a) CRONOS-based edge measurements of a marked road

(b) CNN-based similarity measurements of a dirt road

(c) Tracked 3D boundary points of the dirt road in (b)

Fig. 1: Examples for the proposed image measurements and
visualization of a tracked dirt road on an aerial map. Points shown in
blue were updated by a measurement within the last 3 s. Demo video
on https://www.mucar3.de/iv2021-road-tracking.

allowing to represent multiple lanes, branches, junctions, and
exit ramps directly. The framework, however, relies on a
flat world assumption and considers only two-dimensional
positions and the heading angle and is thus not suitable for
tracking dirt roads in hilly terrain.

In this paper, we present a model based on the representa-
tion of lane boundaries using pieces of clothoids in full 3D
space. It is suitable for complex road scenarios made up of
”simple“ geometric structures, as well as dirt roads with just
one lane, but a greater geometric variety of the road course.

Measurements: The second essential component of a road
tracking system is the measurement and detection process.
Using our framework, all different kinds of measurements in
all modalities could be incorporated into the road estimation
process. However, in this paper, we would like to present
two specific ones, both based on camera images.

Camera images provide rich information about the course
of the road and are thus often used for road tracking. To
simplify the measurement process, it is often shifted to 3D.
Therefore, the images are fused with depth information, e.g.
from a LiDAR sensor, into 3D structures like multi-model
grid maps [3], or transformed to a birds-eye-view based on
a flat world assumption (e.g. [4], [5]). Another possibility
is to perform stereo matching [6]. Nevertheless, this always
imposes limitations – a longer look-ahead can be achieved if
the measurements are performed directly within the images.

https://www.mucar3.de/iv2021-road-tracking


Roads: For roads, several approaches to detect lane
markings in camera images have been proposed, with a recent
trend to machine learning [7], [8], [9]. However, instead
of processing the whole camera image, we want to take
up another idea from the 1980s – to use the lane state
estimation of the last time step to limit the search space for
new measurements [1]. Despite lowering the computational
effort, this makes the measurement quite robust against all
kinds of disturbances and false positives.

Thus, in this paper, we propose the modernization and
a significantly expanded and improved application of the
CRONOS edge detection approach [10], [11, p. 132] – an
extremely efficient method to extract edges of a known
orientation using prior knowledge. It is especially suitable
for paved roads (marked and unmarked).

Dirt Roads: Detecting the lane boundaries of a dirt
road is, however, significantly more difficult. Classical edge
detection often fails here due to the lack of high-contrast edges.
Modern machine-learning-based approaches like semantic
image segmentation show promising results. While semantic
segmentation is suitable to segment the road, it requires
labeled data covering the roads’ appearance in the final
application area for its offline training process. Since dirt
roads show a great variety in their optical appearance, online
adaptive approaches are better suitable for this task. A popular
approach has been used at the DARPA Grand Challenge
2005 [12] using information obtained from a LiDAR sensor
to train an image-classifier online. The authors of [3] and
[13] considered the area underneath the ego vehicle from an
accumulated multi-modal grid to infer features of the road.

In this paper, we present a new CNN-based image mea-
surement that does not rely on other sensors or intermediate
representations of the environment. It is able to segment
the current camera image solely based on a rough initial
indication of road areas in the image.

Contributions: In summary, the particular contributions
of this paper are:
• A flexible framework for road and dirt road tracking in

3D space, based on recursive state estimation,
• a robust measurement for lane markings and road

boundaries using CRONOS edge detection, and
• a new CNN-based image measurement for dirt roads.

Figure 1 shows some examples.

II. ROAD MODEL AND SYSTEM ARCHITECTURE

The overall goal is an estimation of the road course in
3D. To allow more complex maneuvers like overtaking, we
distinguish the different lanes of a road and thus track the
single lane boundaries. The lane boundaries are modeled as
connected clothoid pieces represented by point sequences.
For multiple neighboring lane boundaries, it is sufficient to
model and estimate the position and orientation of just one
primary lane boundary. The neighboring points can then be
defined relative to that primary point as it is depicted in Fig. 2.
While Fig. 2 shows an example of a simple road with two
lanes, this model could represent every possible road course
as well as opening, closing, or branching lanes.

Fig. 2: Exemplary modeling of a road with two lanes. The position
and orientation of one lane boundary are given directly.The position
of the other lane boundaries are defined by their offset ∆y relative
to the primary lane boundary. Here, the primary lane boundary is
the right, it could, however, also be an other one.

A set of neighboring lane boundary points xi is defined
by its primary point’s position odompi =

(
px py pz

)T
and

orientation, given by the quaternion odomqi =
(
qx qy qz qw

)T
,

in a stationary coordinate system, its curvature c, and the
respective offsets ∆yi of the secondary lane boundary points

xi =
(
px py pz qx qy qz qw c ∆y

)T
. (1)

The length of the offset vector ∆yi depends on the number
of lane boundaries being tracked. The width of lane k at
point xi is given by the neighboring lane boundary k − 1:

dki = ∆yki −∆yk−1i (2)

Empirical evaluations have shown that a point distance l of
2 m between the primary lane boundary points is well suitable.
The point distances of the other lane boundary points result
from the curvatures at hand. The dead reckoning coordinate
frame odom serves as a stationary coordinate system.

The usage of clothoids as the fundamental geometric
structure implies a linear evolution of the curvature between
two lane boundary points. Thus, the clothoid parameter of
curvature change

◦
c between two adjacent points is given by

◦
ci = (ci+1 − ci)/l. (3)

The current state of all lane boundary points is recursively
estimated by solving a maximum a posteriori problem
(described in Section III). It incorporates internal geometric
information and constraints, as well as external information
from a terrain estimation [14] and measurements (two ap-
proaches based on camera images are proposed in Section IV).
The proposed measurements use the current state prediction
as prior knowledge, such that the process follows the cycle:

1) Predict from last update
2) Measure lane boundary points using prediction
3) Update through optimization with new measurements

Accordingly, separate modules (ROS nodes) for tracking and
measurements were implemented as shown in Fig. 3.

Terrain Estimation

Measurements Road Tracker

3D Information

Camera Images Lanes 3D
Measurements

Fig. 3: Flowchart of the proposed road tracking pipeline. The red
boxes show the contributions of this paper.



III. ROAD TRACKER

To get a smooth estimate for the lane boundaries in
consistency to both the measurements and an internal road
model, a non-linear optimization of all lane boundary points
xi is performed by minimizing the least squares cost function

x̂ = arg min
x

∑
i

(cMeas.(xi) + cInt.(xi) + cConstr.(xi)) . (4)

The single cost functions c are described in the following.

A. External Information – Measurements

The formulation of the road estimation task as a maximum
a posteriori problem allows to integrate and fuse all kinds
of measurements by adding different residuals to the overall
cost function. To select an appropriate cost function for a
measurement approach, we differentiate between three kinds
of measurements:

1) 2D measurements, e. g., image measurements, which
leave one degree of freedom, that we determine from

2) Terrain height measurements, and
3) 3D measurements, which can be used directly.
All measurements presented in this work use the estimated

lane boundary points from the last time step as prior
knowledge and refer to exactly one lane boundary point.
Thus, we avoid any association problem and can simply sum
up all measurement residuals for all lane boundary points xki
neighbored to the primary point xi (including the primary
point itself):

cMeas.(xi) =
∑
k

(∑
j r

2
2D,j

(
xki
)

+ r2Terrain

(
xki
)

+
∑

j r
2
3D,j

(
xki
))

(5)

1) 2D Measurements: For every image measurement j
of lane boundary point xki a residual r2D,j

(
xki
)

is evaluated.
These measurements can originate from different time steps,
different camera images, as well as different measurement
approaches. We propose different image measurement ap-
proaches for roads and dirt roads in Section IV. They are
integrated the same way: For all of them, the agreement
between the estimated lane boundary point and the image
measurements is determined considering the reprojection error
in the image.

Given the pose of the ego vehicle at image capture time
by the homogeneous transformation matrix vehHj

odom from
the odometry coordinate system to the vehicle coordinate
system, and the extrinsic and intrinsic calibration of the
respective camera with camjHveh and imgjPcamj

, the estimated
lane boundary point is projected into the image:

vehp∗
k

i = vehHj
odom ·

odompki (6)
camjp∗

k

i = camjHveh · vehp∗
k

i (7)
imgjp∗

k

i = imgjPcamj · camjp∗
k

i (8)

This way we obtain a prediction imgjp∗
k

i for the image
position of lane boundary point xki in the image corresponding
to measurement j. This predicted image position should match
the measured image position.

v

u

(a) Point Measurements (b) Line Measurements

Fig. 4: Visualization of the image measurement residuals. Green:
Predicted lane boundary points. Blue: Measurements. Red: Residuals
to be minimized. Using point measurements (a), the upper point
has a residual greater than zero even though it lies perfectly on the
lane marking. This is resolved by using line measurements (b).

Two different cost functions are possible depending on the
kind of measurement:

a) Point Measurement: The image coordinates can be
compared straightforward to those of a measured point imgjyki
using the residual function

r2D,j
(
xki
)

= imgjp∗
k

i − imgjyki . (9)

As it is shown in Fig. 4a, this directly punishes deviations in
u and v coordinates.

b) Line Measurement: Since it is difficult to recognize
one concrete point of a continuous lane boundary, most
approaches are not able to measure the exact position of
a lane boundary point on an observed edge. Choosing an
arbitrary point on the edge results in a wrong error as it is
shown in Fig. 4. Thus, it is beneficial to measure a line instead
of a point and consider the deviations of the predicted image
position from that line. Given the line imgjgki , the residual

r2D,j
(
xki
)

= d
(

imgjp∗
k

i ,
imgjgki

)
, (10)

is evaluated, with d being the orthogonal distance of imgjp∗
k

i

to imgjgki .
2) Terrain Height Measurements: Regardless of whether a

point or a line was measured in an image, we are missing one
degree of freedom as we do not know its distance from the
camera along the pixel ray. However, we can take advantage
of the fact that the road is on the ground and get the missing
information based on the estimated ground height from a
terrain estimation [14]. Hence, the terrain residual

rTerrain
(
xki
)

= (pz − hTerrain(px, py)) · ITerrain(px, py) · w[Terrain]
(11)

models the deviation of the z-coordinate of a lane boundary
point odompki =

(
px py pz

)T
to the estimated terrain height

hTerrain with the corresponding estimated information (inverse
covariance) ITerrain at the respective position. The weighting
factors w (including the weights used in Section III-B) have
to be chosen according to the individual setup and application.

Taking together 2D image and terrain measurements, the
lane boundary points are fully determined in 3D space.

3) 3D Measurements: Additionally or alternatively, 3D
measurements, e. g., the measurement of a lane marking in
the intensities of a LiDAR sensor or the measurement of
the road border in a (colored) terrain grid, could be used.
However, we will not go into that in this paper.



B. Internal Information

The advantage of using maximum a posteriori estimation
over the Kalman Filter is that prior distributions are not
limited to Gaussian distributions over the state vector. Instead,
complex, non-linear functions can be used to represent
the prior distribution. The corresponding cost function is
composed of a clothoid consistency and a smoothness part:

cInt.(xi) = r2Cloth.(xi) + r2Smoothn.(xi) (12)

a) Clothoid Consistency: The first part of Eq. (12)
ensures consistency between two adjacent lane boundary
points according to the clothoid model. To calculate the
residual values, the parameters of the current point i are used
to predict position and orientation of the following point i+1

odomp∗i+1 =odom pi +odom qi ·∆pi→i+1 (13)
odomq∗i+1 =odom qi ·∆qi→i+1, (14)

using the clothoid geometry model [11, p. 207]

∆pi→i+1 =
(
l, 1

2cil
2 + 1

6

◦
cil

3, 0
)>

(15)

∆qi→i+1 =
(
cos(ψ2 ), 0, 0, sin(ψ2 )

)>
(16)

with ψ = ci · l +
1

2

◦
ci · l2 (17)

The residual vector itself is then given by:

rCloth.,[1,2,3] =
(odomp∗i − odompi

)
· w[Cloth.Pos.] (18)

rCloth.,[4,5,6] = euler
(odomq∗i · odomq−1i

)
· w[Cloth.Orient.] (19)

Please note that the residual values for the orientation error
are used in form of euler angles.

b) Smoothness: The second part of the internal residual
function ensures a certain degree of smoothness and thus
prevents unsteady jumps in the road course. The respective
residuals penalize any change in road width (of all secondary
lane boundaries k) and curvature between two successive
lane boundary points:

rSmoothn.,[1] =
∑
k

(
dki − dki+1

)
· w[SmoothLaneWidth] (20)

rSmoothn.,[2] = (ci − ci+1) · w[SmoothCurvature] (21)

C. Constraints

In addition to the internal information, limitations of the
state variables are modeled, since not all value ranges of the
state variables are equally likely. For example, a minimum
and a maximum lane width, as well as a maximum curvature,
can be assumed. We model these limitations in form of an
additional part of the cost function representing the respective
prior distributions.

The residual function to limit a parameter value p within
the range of [plim −∆plim; plim + ∆plim] is

rlim(p) = exp
[(
|p− plim| −∆plim

)
· wlim

]
. (22)

Here wlim is a weighting parameter used to set the harshness
of the limit. An exemplary resulting cost function and the
respective probability distribution are visualized in Fig. 5.

Fig. 5: The implemented model of parameter limitations with
wlim = 50. The blue graph shows the cost function for the lane width
and the red graph the respective relative probability distribution.
Lane widths between 3 and 4 meters are practically equally likely,
whereas larger or smaller lane widths are associated with very high
costs and are accordingly modeled to be extremely unlikely.

This kind of ”soft” constraint enables better convergence
behavior compared to strict, hard constrains due to its
continuous gradients. The actually implemented cost function
cConstr.

(
xki
)

consists of limitation residuals in the form of
Eq. (22) for the lane width d and the curvature c of all points
xki corresponding to lane boundary point i.

D. Implementation

Using the Ceres Solver [15], one single optimization
problem for all lane boundary points in front of the car is
solved. To ensure a minimum look-ahead, the lane boundaries
are extended to the front using the estimated attributes of the
frontmost point to predict a new lane boundary point.

IV. IMAGE MEASUREMENTS

This section presents two different measurements of road
and dirt road borders in images for use with our tracker.

A. Edge Detection using CRONOS

CRONOS [10] is a very simple but effective edge detection
method from the beginning of autonomous driving [11]. It is
efficiently detecting edges of a particular direction by moving
a rotated Prewitt convolution mask over an image window
and evaluating the mask responses. If the mask is rotated
according to the expected angle of a searched edge, it will not
respond to unrelated edges in other directions (see Fig. 6).

To measure the lane boundary positions using CRONOS,
the predicted lane boundary points are projected into the
image. They are used to set up measurement windows and
to calculate its expected edge angle, not only to rotate the
convolution mask but also to decide whether we set up a
horizontal and/or a vertical measurement window.

For inner lane boundaries, which are usually marked, we
are explicitly looking for white lane markings. In the mask
responses, they can be recognized by two successive, strong,
dark-bright and bright-dark edges in a reasonable distance.
As the width of lane markings in meters is standardized, the
expected distance in pixels can be calculated.

For the outer road boundaries, we do not rely on white
lane markings. On the one hand, with white posts or snow
next to the road, looking for white blobs is prone to errors.
On the other hand, roads or especially dirt roads do not need
to be marked at all. Thus, for outer lane boundaries, simply
selecting the innermost edge of a certain amplitude proved
to be the most robust approach.



Fig. 6: Example for measuring an inner lane boundary: Predicted
lane boundary points (circles), measurement windows, and expected
lane marking width (lines) are shown in green. CRONOS responses
are shown in red (dark-bright) and yellow (bright-dark). The blue
line shows the resulting measurement. Note the two measurement
windows per point. In the uppermost window the bright-dark edge
is not detected, as it appears in another direction due to a shadow.

(a) (b) (c)

Fig. 7: Examples for measuring outer lane boundaries: (a) A lot
of wrong CRONOS mask responses next to the road, handled by
using the innermost edge. (b) Horizontal and vertical measurement
windows for the same lane boundary points of an unmarked road. For
clarity, the second measurement window for the line measurement
is not displayed. (c) Measurements of a dirt road boundary. To
decrease sensitivity for details, the image resolution is reduced.

The result of each (successful) measurement is one image
point. As described in Section III-A.1, it is beneficial to
measure image lines. Thus, we set up a second measurement
window with a slight offset in distance for every lane boundary
point. If an edge point of the same direction is found in both
windows, we obtain a line measurement for the corresponding
lane boundary point. Using two measurement windows also
reduces the number of outliers, as the edge has to be found
in both windows and, e. g., dirt will not show up in both
windows at the same angle. Furthermore, by comparing the
expected edge angle to the angle between the two points
measured, remaining outliers can be easily rejected.

Figures 6 and 7 show different examples for measurements
of inner and outer lane boundaries using CRONOS.

B. CNN-based Similarity Measurement

In order to obtain robust measurements on challenging dirt
roads, we have developed a new measurement method. It is
based on the observation that although the textures of dirt
roads can appear quite different, they always have very similar
image structures within an image, usually clearly different
from the surrounding area. Thus, the fundamental idea is to
compare image structures that are most likely to be part of
the road with the image structures of the entire image. The
full measurement process is depicted in Fig. 8.

The first step is to transform the input image into a 256-
dimensional feature map using the first 3 blocks (i.e., 13
layers) of a ResNet-18 CNN [16]. It is downsampling the
spatial image dimensions by a factor of 16.

The projections of the currently estimated lane boundary
points (compare Section III-A.1) are used to derive image
areas being highly probably part of the path (shown in green
in Fig. 8). This area is used to generate the reference feature
vector by averaging the respective pixels of the feature map.

ResNet
Encoder

…

153 x 63 x 2562437 x 995 x 3

[0;1]

cos
sim

Measurement
Extraction

Fig. 8: Overview of the proposed CNN-based similarity measure-
ment process. The reference feature vector is extracted from the
areas marked in green. The pixel marked red in the feature map is
an example of a pixel being compared with the reference vector.
Due to the strong visual proximity of the image area to the rest of
the trail, a similarity score of approximately one is obtained. The
lower part of the figure illustrates the second step, the extraction of
measurements for the given lane boundary points from the score
image. Blue circles visualize the resulting image measurements.

Then, scores between 0 and 1 are obtained by calculating
the cosine similarity between every pixel and the reference
feature vector. In a second step, measurements for the visible
lane boundary points are extracted from the resulting score
image by finding transitions from low to high score values.

The relatively simple processing pipeline and the fact that
the feature map only needs to be computed once for the entire
image make the method very efficient and real-time capable.
By computing the reference feature vector from the current
image, the method is highly flexible and can be used to detect
a wide variety of paths. Figure 9 shows some examples.

Annotation and training also turn out to be highly efficient.
Image pixels just need to be annotated as “road” or “non-road”.
During the training of the CNN, the Cosine Embedding Loss1

is used to learn an embedding that has the largest possible
differences between “road” and “non-road” regions. We found
even a very small training dataset of only 20 images to be
sufficient for a large variability of scenes (see also Fig. 9).
This makes the measurement method very attractive for road
and path tracking.

1https://pytorch.org/docs/stable/generated/torch.
nn.CosineEmbeddingLoss.html

Fig. 9: Examples for the CNN-based similarity score on test images
of unseen dirt roads. The reference feature vector is extracted from
the area marked in green. The similarity between the single pixels
and the reference feature vector is shown in an overlay from yellow
for high similarity to blue for low similarity.

https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html


V. EXPERIMENTAL RESULTS

This section shows that the proposed road tracking system
is able to track different roads robustly.

A. Timing
Figure 10 illustrates the typical computation times of the

single components, indicating that the cycle time of our image
capturing process of 100 ms is not being exceeded. Thus,
real-time road tracking is possible. All presented results were
obtained using a single core of an Intel© Core™ i7-8700K
CPU running at 3.70 GHz.

Fig. 10: Overview of the computing times of the various modules
making up the tracking system.

B. Quantitative Results
A quantitative evaluation of our tracking system can be

found in Fig. 11. Here, the tracking accuracy of the individual
lane boundaries is compared in dependence on the ego-relative
distance for a marked road and a dirt road. Both scenes
include sharp curves with very limited visibility and partially
extremely challenging lighting conditions. Nevertheless, the
system is able to locate the road precisely.

As expected, the accuracy on a marked road is significantly
better. However, due to the new adaptive measurement method,
it is possible to track the dirt road with sufficient accuracy.

In the case of the marked two-lane road, the accuracy of
the left lane boundary is significantly worse than that of the
other two. This difference is because we are driving exactly
between the right and the center lane boundary. The left lane
boundary is significantly further away and, therefore, more
difficult to observe.
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Fig. 11: Evaluation of the position accuracy of the tracked lane
boundaries in dependence on the ego-relative distance for both a
marked tarred road and a rural dirt road. The evaluation includes
every single time-step, i.e., a world-fixed lane boundary point occurs
at multiple ego-relative distances over time as we approach it.

The ground truth reference data used here has been obtained
by a large-scale optimization process, including ego vehicle
positions from a high accuracy INS system with RTK-GNSS
and manually labeled lane boundaries in camera images.

The road courses evaluated here as well as the tracking of
further scenes can be found in our demo video, available at
https://www.mucar3.de/iv2021-road-tracking.

VI. CONCLUSION

In this paper, we present a flexible framework based
on connected clothoid pieces, as well as two image-based
measurements, for the combined tracking of paved roads and
dirt roads. Future work will integrate 3D measurements.

While we show how to use traditional edge detection
methods to robustly measure road boundaries using prior
knowledge, we need a more sophisticated measurement for
dirt roads. Based on a feature map extracted by ResNet, the
cosine similarity of image pixels to a reference feature vector
from a known road area is considered. This way, a score
image is obtained, from which measurements are extracted.

We show the effectiveness of our approach in quantitative
and qualitative results.
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